Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
2.
Sci Rep ; 11(1): 13854, 2021 07 05.
Article in English | MEDLINE | ID: covidwho-1297314

ABSTRACT

To describe the long-term health outcomes of patients with COVID-19 and investigate the potential risk factors. Clinical data during hospitalization and at a mean (SD) day of 249 (15) days after discharge from 40 survivors with confirmed COVID-19 (including 25 severe cases) were collected and analyzed retrospectively. At follow-up, severe cases had higher incidences of persistent symptoms, DLCO impairment, and higher abnormal CT score as compared with mild cases. CT score at follow-up was positively correlated with age, LDH level, cumulative days of oxygen treatment, total dosage of glucocorticoids used, and CT peak score during hospitalization. DLCO% at follow-up was negatively correlated with cumulative days of oxygen treatment during hospitalization. DLCO/VA% at follow-up was positively correlated with BMI, and TNF-α level. Among the three groups categorized as survivors with normal DLCO, abnormal DLCO but normal DLCO/VA, and abnormal DLCO and DLCO/VA, survivors with abnormal DLCO and DLCO/VA had the lowest serum IL-2R, IL-8, and TNF-α level, while the survivors with abnormal DLCO but normal DLCO/VA had the highest levels of inflammatory cytokines during hospitalization. Altogether, COVID-19 had a greater long-term impact on the lung physiology of severe cases. The long-term radiological abnormality maybe relate to old age and the severity of COVID-19. Either absent or excess of inflammation during COVID-19 course would lead to the impairment of pulmonary diffusion function.


Subject(s)
COVID-19/epidemiology , Lung/virology , Respiration Disorders/virology , SARS-CoV-2/pathogenicity , Survivors , Adult , Aged , Follow-Up Studies , Humans , Lung/physiopathology , Male , Middle Aged , Respiration Disorders/physiopathology , Respiratory Physiological Phenomena , Retrospective Studies , Survivors/statistics & numerical data
3.
JAMA Netw Open ; 4(1): e2036142, 2021 01 04.
Article in English | MEDLINE | ID: covidwho-1049543

ABSTRACT

Importance: Although plenty of data exist regarding clinical manifestations, course, case fatality rate, and risk factors associated with mortality in severe coronavirus disease 2019 (COVID-19), long-term respiratory and functional sequelae in survivors of COVID-19 are unknown. Objective: To evaluate the prevalence of lung function anomalies, exercise function impairment, and psychological sequelae among patients hospitalized for COVID-19, 4 months after discharge. Design, Setting, and Participants: This prospective cohort study at an academic hospital in Northern Italy was conducted among a consecutive series of patients aged 18 years and older (or their caregivers) who had received a confirmed diagnosis of severe acute respiratory coronavirus 2 (SARS-CoV-2) infection severe enough to require hospital admission from March 1 to June 29, 2020. SARS-CoV-2 infection was confirmed via reverse transcription-polymerase chain reaction testing, bronchial swab, serological testing, or suggestive computed tomography results. Exposure: Severe COVID-19 requiring hospitalization. Main Outcomes and Measures: The primary outcome of the study was to describe the proportion of patients with a diffusing lung capacity for carbon monoxide (Dlco) less than 80% of expected value. Secondary outcomes included proportion of patients with severe lung function impairment (defined as Dlco <60% expected value); proportion of patients with posttraumatic stress symptoms (measured using the Impact of Event Scale-Revised total score); proportion of patients with functional impairment (assessed using the Short Physical Performance Battery [SPPB] score and 2-minute walking test); and identification of factors associated with Dlco reduction and psychological or functional sequelae. Results: Among 767 patients hospitalized for severe COVID-19, 494 (64.4%) refused to participate, and 35 (4.6%) died during follow-up. A total of 238 patients (31.0%) (median [interquartile range] age, 61 [50-71] years; 142 [59.7%] men; median [interquartile range] comorbidities, 2 [1-3]) consented to participate to the study. Of these, 219 patients were able to complete both pulmonary function tests and Dlco measurement. Dlco was reduced to less than 80% of the estimated value in 113 patients (51.6%) and less than 60% in 34 patients (15.5%). The SPPB score was suggested limited mobility (score <11) in 53 patients (22.3%). Patients with SPPB scores within reference range underwent a 2-minute walk test, which was outside reference ranges of expected performance for age and sex in 75 patients (40.5%); thus, a total of 128 patients (53.8%) had functional impairment. Posttraumatic stress symptoms were reported in a total of 41 patients (17.2%). Conclusions and Relevance: These findings suggest that at 4 months after discharge, respiratory, physical, and psychological sequelae were common among patients who had been hospitalized for COVID-19.


Subject(s)
COVID-19/complications , Respiration Disorders/epidemiology , Stress Disorders, Post-Traumatic/epidemiology , Aged , COVID-19/pathology , COVID-19/psychology , COVID-19/virology , Female , Humans , Italy/epidemiology , Male , Middle Aged , Patient Discharge , Physical Functional Performance , Respiration Disorders/virology , Respiratory Function Tests , SARS-CoV-2 , Stress Disorders, Post-Traumatic/virology , Time Factors , Post-Acute COVID-19 Syndrome
4.
Med Hypotheses ; 144: 110259, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-753088

ABSTRACT

The COVID-19 pandemic is the most devastating health emergency that humans have seen over the past century. The war against the disease has been handicapped by unavailability of effective therapeutic options. Till date, there is no clinically approved vaccine or drug for the treatment of COVID-19, and the ongoing search to find a novel therapy is progressing at pandemic pace. Herein, we propose a novel hypothesis based on sound research evidence that electric stimulation can be a potential adjuvant to the currently used symptomatic therapies and antiviral drugs. Based on preclinical evidence, we propose that electric stimulation can improve respiratory functions, inhibit SARS-CoV-2 growth, reduce pain, boost immunity and improve the penetration of antiviral drugs. We envisage that our hypothesis, if used clinically as an adjuvant, may significantly improve the therapeutic outcomes of the current treatment regimen being used around the globe for the management of COVID-19.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Electric Stimulation Therapy , Antiviral Agents/therapeutic use , B-Lymphocytes/immunology , HIV Infections/immunology , HIV Infections/therapy , Humans , Immune System , Models, Theoretical , Pain Management , Respiration , Respiration Disorders/immunology , Respiration Disorders/virology , T-Lymphocytes/immunology , Treatment Outcome
5.
Thorax ; 75(11): 1009-1016, 2020 11.
Article in English | MEDLINE | ID: covidwho-729414

ABSTRACT

The COVID-19 pandemic has led to an unprecedented surge in hospitalised patients with viral pneumonia. The most severely affected patients are older men, individuals of black and Asian minority ethnicity and those with comorbidities. COVID-19 is also associated with an increased risk of hypercoagulability and venous thromboembolism. The overwhelming majority of patients admitted to hospital have respiratory failure and while most are managed on general wards, a sizeable proportion require intensive care support. The long-term complications of COVID-19 pneumonia are starting to emerge but data from previous coronavirus outbreaks such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) suggest that some patients will experience long-term respiratory complications of the infection. With the pattern of thoracic imaging abnormalities and growing clinical experience, it is envisaged that interstitial lung disease and pulmonary vascular disease are likely to be the most important respiratory complications. There is a need for a unified pathway for the respiratory follow-up of patients with COVID-19 balancing the delivery of high-quality clinical care with stretched National Health Service (NHS) resources. In this guidance document, we provide a suggested structure for the respiratory follow-up of patients with clinicoradiological confirmation of COVID-19 pneumonia. We define two separate algorithms integrating disease severity, likelihood of long-term respiratory complications and functional capacity on discharge. To mitigate NHS pressures, virtual solutions have been embedded within the pathway as has safety netting of patients whose clinical trajectory deviates from the pathway. For all patients, we suggest a holistic package of care to address breathlessness, anxiety, oxygen requirement, palliative care and rehabilitation.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Coronavirus Infections/therapy , Lung Diseases/therapy , Pneumonia, Viral/complications , Pneumonia, Viral/therapy , Respiration Disorders/therapy , Algorithms , COVID-19 , Coronavirus Infections/diagnosis , Humans , Lung Diseases/diagnosis , Lung Diseases/virology , Pandemics , Pneumonia, Viral/diagnosis , Respiration Disorders/diagnosis , Respiration Disorders/virology , SARS-CoV-2
7.
Nature ; 585(7824): 268-272, 2020 09.
Article in English | MEDLINE | ID: covidwho-244486

ABSTRACT

An outbreak of coronavirus disease 2019 (COVID-19), which is caused by a novel coronavirus (named SARS-CoV-2) and has a case fatality rate of approximately 2%, started in Wuhan (China) in December 20191,2. Following an unprecedented global spread3, the World Health Organization declared COVID-19 a pandemic on 11 March 2020. Although data on COVID-19 in humans are emerging at a steady pace, some aspects of the pathogenesis of SARS-CoV-2 can be studied in detail only in animal models, in which repeated sampling and tissue collection is possible. Here we show that SARS-CoV-2 causes a respiratory disease in rhesus macaques that lasts between 8 and 16 days. Pulmonary infiltrates, which are a hallmark of COVID-19 in humans, were visible in lung radiographs. We detected high viral loads in swabs from the nose and throat of all of the macaques, as well as in bronchoalveolar lavages; in one macaque, we observed prolonged rectal shedding. Together, the rhesus macaque recapitulates the moderate disease that has been observed in the majority of human cases of COVID-19. The establishment of the rhesus macaque as a model of COVID-19 will increase our understanding of the pathogenesis of this disease, and aid in the development and testing of medical countermeasures.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Disease Models, Animal , Lung/diagnostic imaging , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Respiration Disorders/pathology , Respiration Disorders/virology , Animals , Body Fluids/virology , Bronchoalveolar Lavage , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/virology , Cough/complications , Female , Fever/complications , Lung/pathology , Lung/physiopathology , Lung/virology , Macaca mulatta , Male , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/virology , Radiography , Respiration Disorders/complications , Respiration Disorders/physiopathology , SARS-CoV-2 , Time Factors , Viral Load
8.
ACS Chem Neurosci ; 11(10): 1379-1381, 2020 05 20.
Article in English | MEDLINE | ID: covidwho-155473

ABSTRACT

Following the identification of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, we are now again facing a global highly pathogenic novel coronavirus (SARS-CoV-2) epidemic. Although the lungs are one of the most critically affected organs, several other organs, including the brain may also get infected. Here, we have highlighted that SARS-CoV-2 might infect the central nervous system (CNS) through the olfactory bulb. From the olfactory bulb, SARS-CoV-2 may target the deeper parts of the brain including the thalamus and brainstem by trans-synaptic transfer described for many other viral diseases. Following this, the virus might infect the respiratory center of brain, which could be accountable for the respiratory breakdown of COVID-19 patients. Therefore, it is important to screen the COVID-19 patients for neurological symptoms as well as possibility of the collapse of the respiratory center in the brainstem should be investigated in depth.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Pneumonia, Viral/physiopathology , Pneumonia, Viral/virology , Respiration Disorders/virology , Respiratory Center/virology , Animals , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/epidemiology , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Pandemics , Pneumonia, Viral/epidemiology , Respiration Disorders/physiopathology , Respiratory Center/physiopathology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2
9.
Lab Chip ; 20(9): 1621-1627, 2020 05 05.
Article in English | MEDLINE | ID: covidwho-116332

ABSTRACT

Rapid, sensitive and specific detection and reporting of infectious pathogens is important for patient management and epidemic surveillance. We demonstrated a point-of-care system integrated with a smartphone for detecting live virus from nasal swab media, using a panel of equine respiratory infectious diseases as a model system for corresponding human diseases such as COVID-19. Specific nucleic acid sequences of five pathogens were amplified by loop-mediated isothermal amplification on a microfluidic chip and detected at the end of reactions by the smartphone. Pathogen-spiked horse nasal swab samples were correctly diagnosed using our system, with a limit of detection comparable to that of the traditional lab-based test, polymerase chain reaction, with results achieved in ∼30 minutes.


Subject(s)
Horse Diseases/diagnosis , Lab-On-A-Chip Devices , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Respiration Disorders/veterinary , Smartphone , Animals , Betacoronavirus/isolation & purification , COVID-19 Testing , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Herpesvirus 1, Equid/isolation & purification , Herpesvirus 4, Equid/isolation & purification , Horse Diseases/microbiology , Horse Diseases/virology , Horses , Influenza A Virus, H3N8 Subtype/isolation & purification , Mobile Applications , Nose/microbiology , Nose/virology , Point-of-Care Systems , Respiration Disorders/diagnosis , Respiration Disorders/microbiology , Respiration Disorders/virology , SARS-CoV-2 , Streptococcus equi/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL